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Abstract—The identification of novel biological factors as-
sociated with thrombin generation, a key biomarker of the
coagulation process, remains a relevant strategy to disentangle
pathophysiological mechanisms underlying the risk of venous
thrombosis (VT). As part of the MARseille THrombosis As-
sociation Study (MARTHA), we measured whole blood DNA
methylation levels, plasma levels of 300 proteins, 3 thrombin
generation biomarkers (endogeneous thrombin potential, peak
and lagtime), clinical and genetic data in 700 patients with
VT. The application of a novel high-dimensional multi-levels
statistical methodology we recently developed, the data driven
sparse Partial Least Square method (ddsPLS), on the MARTHA
datasets enabled us 1/ to confirm the role of a known mutation
of the variability of endogenous thrombin potential and peak, 2/
to identify a new signature of 7 proteins strongly associated with
lagtime.

Index Terms—Multi-Omics, High Dimensional Data, Missing
Data, SVD, Partial Least Square, Variable Selection, Multi-Block
Analysis, Machine Learning, Thrombine Generation

I. INTRODUCTION

Venous thrombosis (VT) is a complex disease characterized

by the formation of a blood clot in a deep vein that can

later break free and travel to the lung to provoke pulmonary

embolism.

In this process, thrombin is a key molecule and individuals

that have a strong capacity to produce thrombin are at higher

risk for VT. The thrombin generation potential (TGP) of an

individual can be measured by thrombin generation assays

that capture the complete dynamics of the coagulation process

following clot formation. TGP is generally summarized by

the use of three associated parameters, the LagT ime, time

after the lag-phase that follows trigger of coagulation until

the initiation of thrombin generation, the Peak, the maximum

amount of thrombin that can be produced, and the ETP that

corresponds to the area under the thrombogram curve (i.e.

amount of thrombin generated), see Figure 1. While ETP and

Peak are highly correlated, the LagT ime variable generally

shows moderate correlation with the two other markers [1].

We had previously demonstrated that the F2 G20210A mu-

tation was the main genetic factor contributing to ETP and

Peak plasma variability without impacting LagT ime, see [1].

In addition, using a methylation-wide association strategy, we

reported that DNA methylation marks in whole blood did not

strongly associate with TGP biomarkers [2]. Motivated by the

search for novel molecular determinants of TGP biomarkers,

plasma samples of MARTHA participants were profiled for

200 proteins using a recent high-throughput technology [3].

In the current work, these proteomics data were studied for

association with ETP , Peak and LagT ime. Using a recently

developed high-dimensional multi-omics algorithm, we jointly

studied the association between ETP , Peak and LagT ime
variables through a multivariate analysis with known TGP de-

terminants, the proteomics data and DNA methylation that was

available only in a subsample of participants. The proposed

methodology uses the data driven sparse Partial Least Square

method (ddsPLS) to predict each of the three TGP biomarkers

in a multivariate fashion taking into account possible missing

values in the covariates using information in the response ma-

trix while keeping sparsity in the context of high-dimensional

data where the number of predictors p is in the same order

or superior to the number of individuals n. ddsPLS has been

implemented in R and Python, and is available on CRAN 1

and on PyPi 2, respectively.

The present work is divided in four parts. The first part

describes the data set. The second part describes the method

1See https://cran.r-project.org/package=ddsPLS.
2See https://pypi.org/project/py ddspls/.
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and the third one describes the results applying the method to

the data set. The fourth part concludes and gives perspectives.

II. NOTATION

Lets denote the matrices in bold upper cases and vectors in

bold lower cases. In the case of greek letter objects, matrices

are represented with underlined greek letters and no difference

in the notation in those case between matrices and column

vector matrices. X denoted matrices account for predictor

associated matrices and Y for response matrices. Indices are

used when necessary. Without further indication, all matrices

are standardized, zero mean and unit variance for each column.

n is used to represent the number of rows of a matrix, and

also the number of individuals. The number of columns of a

X matrix, resp. Y matrix, is represented by the letter p, resp.

by the letter q. The rth column vector of a given matrix U is

denoted u(r). Matrix sets are denoted as Rn×p and correspond

to n rows and p columns matrices. In denotes identity matrix

with n columns. ||.||2 denotes the L2-norm of a given vector

and (x,y) ∈ R
n×12 → xTy the associated L2-cross-product

where the transpose operator is symbolized by “.T “. Let the

proportion of variance of a matrix Y explained by a matrix X
be expressed as

||XB(Y,X)||2F
||Y||2F

× 100,

where ||.||F is the Frobenius norm and B(Y,X) is the multi-

variate coefficient regression matrix which solves the Ordinary

Least Square (OLS) problem maxB ||Y −XB||2F .

Let be denoted by R the number of dimensions built in the

following.

III. MATERIALS

This work was based on the MARseille THrombosis As-

sociation Study (MARTHA) cohort including patients with

VT recruited at the Thrombophilia center of La Timone hos-

pital (Marseille, France) between January 1994 and October

2005. This study has been extensively described in previous

works [1], [4].

A. Biological measurements

Thrombin generation potential (TGP) was measured in

platelet-poor plasma (PPP) of 705 individuals using the CAT

method as described in [1]. Plasma levels of these individuals

were profiled for 384 antibodies (referred thereafter to as HPAs

as they were selected from the Human Protein Atlas) targeting

234 proteins using high-affinity bead array technology. These

proteins have been selected because of their potential role

in the coagulation and fibrinolysis cascades or because they

have been reported to be associated with cardiovascular traits.

From this sample of participants, 350 have been epityped for

whole blood DNA methylation (referred to as mDNA) using

the Illumina H450K array as described in [4]. For the current

application, we only used the 3,174 most variable and relevant
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Fig. 1. Thrombin generation test curve and it main features.

CpG sites 3 among the ≈380,000 measured CpG sites.

All patients were genotyped for the F2 G20210A mutation and

measured for Protein S (PS), Protein C (PC) and Antithrombin

(AT), the three main natural coagulation inhibitors, as previ-

ously described [4]. From the initial set of 705 participants

with TGP measurements, 9 were excluded from the final

analyses because they exhibited extreme outlier values for

LagT ime.

In the studied population, the correlations between ETP
and LagT ime, ETP and Peak and LagT ime and Peak
were 0.17, 0.77 and 0.013, respectively.

B. Missing sample structure

All studied variables were divided in seven matrices, ie.

blocks, according to the nature of the data. Blocks were

of unequal sizes because of missing values. Table I shows

the division of missing samples in each data set. Only five

blocks showed samples with missing data. The number of

samples missing is provided according to each couple of

blocks (Blockrow, Blockcolumn). Colors of rows and columns

symbolize the same blocks respectively and so the diagonal

represents the number of missing samples for the single cor-

responding block. The 696 participants selected for the present

analysis had no missing information on the Y block defined

by the three TGP biomarkers (ETP , Peak, LagT ime). As

a consequence, working on available data only would lead to

the exclusion of 470 individuals, see Table I.

IV. METHODS

Many methods are available for high-dimensional data

analysis. For example, the sparse PLS, see [5], is popular

but deal with missing values in a two-steps approach and

not in a supervised framework. Non multi-block and non

supervised methods such as softImpute [6] can also deal with

missing values but not in the context of supervised analysis.

imputeMFA, see [7], deals with missing values but is not

3We removed the CpG sites for which InterQuartiles Range was lower than
0.05 and for which maximum absolute correlation with any of the three TGP
biomarkers was below 0.25.
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TABLE I
MISSING INFORMATION ACCORDING TO THE TYPE OF DATA IN THE 696

PARTICIPANTS INCLUDED IN THE STUDY. ONLY TWO SETS OF

INDIVIDUALS, CORRESPONDING TO a AND b IN THE FOLLOWING TABLE,
ARE MISSING IN THREE BLOCKS.

B
LO

C
K

H
PA

s

P
S

F
2

G
2

0
2

1
0

A

P
C

A
G

E

B
M

I

A
T

m
D

N
A

HPAs 4 0 0 0 0 0 0 4
PS 0 3 0 2 0 0 0 1

F2 G20210A 0 0 0 0 0 0 0 2
PC 0 2 0 4 0 0 0 4

AGE 0 0 0 0 0 0 0 0
BMI 0 0 0 0 0 2 0 18
AT 0 0 0 0 0 0 0 0

mDNA 4 1 2 4 0 18 0 433

Total
8 6 2 10 0 20 0 462

+6a +8a,b +2b +8a,b

8 12 2 18 0 22 0 470
a 6 individuals are missing for {PS,PC,mDNA} consequently.
b 2 individuals are missing for {BMI,PC,mDNA} consequently.

supervised and shows poor results in high dimensional setting.

Support Vector Machine (SVM), introduced by [8] and neural

networks do not allow variable selection and generally require

a very large number of samples to achieve efficiency and

accuracy. Aggregative methods such as random forests [9]

are also very attractive methodologies but are computationally

time demanding. We here propose to apply a data driven sparse

Partial Least Square (ddsPLS, see [10]) that has the mul-

tiple advantages of addressing high-dimensional multi-block

supervised problems, multivariate regression or classification,

in the presence of missing data with regularization and variable

selection, and in a time effective manner.

A variance-covariance matrix soft-thresholding algorithm in-

spired from ddsPLS tools allows regularization and variable

selection while missing data imputation is performed thanks to

the Koh-Lanta algorithm that the authors developed. Both

of those aspects are described below.

A. A PLS (Partial Least Square) inspired method

PLS looks for common structure, through singular value

decomposition (SVD) decomposition, to X and Y maximizing

(YX)T (YX). Only the first principal vector is built through

the weight vector u, resp. v, for the X part, resp. the Y
part, corresponding to component vector t = Xu, resp.

s = Yv. A technical step, denoted as deflation allows to

remove the information carried by that component to both of

the matrices. Classically, once that deflation is performed, the

same procedure is done on the residual matrices, building a

second then a third up to build R components, as ordered by

the user. Deflation is not performed in our method for reasons

exposed in [10].

B. ddsPLS: a three steps algorithm

The first step permits to extract the marginal R-dimensional

common structure of each block t and the block Y. The second

step finds a R-dimensional common structure to the T different

R-dimensional components and the block Y. The last step

builds the linear regression matrix predicting block Y.

The soft-thresholding operation, ∀λ ∈ [0, 1], denoted as Sλ,

applied to any matrix to each of its coefficient such as Sλ :
x→ sign(x)(|x| − λ)+, where sign gives the sign of a real,

|.| denotes the absolute value and (.)+ the max between its

argument and 0.

That operator is applied to the different variance-covariance

matrices, let say the multi-block data set is built on T blocks

and so, ∀t ∈ {1, · · · , T}, the following SVD decompositions

are performed

max
Ut∈Rpt×R

R∑
r=1

||Sλ

(YTXt

n− 1

)
u
(r)
t ||22

s.t. UT
t Ut = IR,

where each u(r) is the rth weight associated with the block

Xt and the corresponding rth component is denoted as t
(r)
t =

Xtu
(r)
t ∈ R

n×1. The soft-thresholding operation implies

that some coefficients are naturally put to 0 in the resulting

matrix permitting efficient and sparse weight extraction. In the

following example X, resp. Y, is defined through p = 3, resp.

q = 2, variables and the weight matrix is indeed sparse

⎡
⎣0.15 0.9
0.5 0.2
0.6 0.1

⎤
⎦

︸ ︷︷ ︸
(YT X)T

n−1

=⇒
λ=0.2

⎡
⎣ 0 0.7
0.3 0
0.4 0

⎤
⎦

︸ ︷︷ ︸
Sλ

(
(YT X)T

n−1

)
=⇒
SVD

U =

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎣10
0

⎤
⎦

︸︷︷︸
u(1)

,

⎡
⎣ 0
0.6
0.8

⎤
⎦

︸ ︷︷ ︸
u(2)

⎤
⎥⎥⎥⎥⎥⎦
.

Once each t structure is defined, a common structure to

the T blocks is build thanks to another R-dimensional SVD
decomposition applied to the concatenation of the T different

R-dimensional descriptions Sλ

(
YTXt

n−1

)
Ut. The part of the

built weights corresponding to block t is denoted as super-
weight and is symbolized by β

t
∈ R

R×R. It corresponds to

the impact of the previously selected variables of every blocks

on the super description of the block Y for each super-
component XtUtβt

∈ R
n×R. The scaled super-weights

Utβt
∈ R

n×R permit to interpret the effect of one variable of

a given block on the considered super-component since its

absolute value is inferior or equal to 1 and, for a given super-
component, variables are ordered in term of importance by

their scaled super-weights.

A last step builds a regression model such as

Y ≈
T∑

t=1

XtBt ∈ R
n×q,

using Moore-Penrose pseudo-inverse in the case of regression

and a linear discriminant analysis model (LDA) is built on the

basis of the R super-components to predict new individual

classes.
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C. The Koh-Lanta algorithm

Missing values might appear in a train or in a test data

set but the model is built on the train part and tested on the

test part. The way of dealing with the missing values must

therefore be different in both cases, which is the objective

of the Koh-Lanta algorithm developped in [10]. The Tribe
Stage permits imputation in the train data set and must enrich

the being built model while the Reunification Stage estimates

missing values in the test data set with no modification of the

model.

The Tribe Stage is an iterative procedure which uses, consid-

ering a given block for which samples are missing, pieces of

information present for the other samples in the block Y 4 are

used to build a ddsPLS model on non missing valued data

sets and then estimates potential positions of missing samples.

At each iteration of the algorithm, only previously selected

variables are taken into account and others are removed from

the analysis, this is the Tribe Stage of Koh Lanta. Convergence

is controlled with a maximum number of iterations and a

minimum variation of the Moore-Penrose description of the

X part, according to the L2-cross-product.

The Reunification Stage uses the final model of the Tribe Stage
to predict the missing values of the test data set in a single

loop.

D. A new parametrization of the ddsPLS

So far ddsPLS models depend on two user tunable param-

eters which are

• R ∈ N
�: The number of dimensions to be built.

• λ ∈ [0, 1]: The correlation threshold above which an

interaction between a variable of a X block variable and

a Y variable is not taken into account.

The ddsPLS has been modified and parameter λ has been

replaced with parameter L0 ∈ N� which represents the

maximum number of X variables to be selected in the model.

But for a given L0, λ is no unique. The chosen rule was

to consider the model corresponding to the smallest λ for a

given L0 because it would eventually give the same degree of

sparsity but gathers more information since soft-thresholding

operation removes less information in that case.

Also this solution would certainly be efficient in the cases

of data sets with variance-covariance matrices particularly

sensible to down-sampling but this has not been explored yet.

E. A new initialization of the missing values in the ddsPLS

The mean imputation for initializing missing values was

so far considered. This drives the algorithm to bias the

correlations between the Y variables and the predictors. In

the context of many missing samples, which is the case in

the Methylation block (≈ 67.5% of missing samples) that

bias implies sub-optimal choice over the soft-thresholding

operation. The most correlated Methylation CpG site is

4Only the Y is used as a covariate matrix, through its super-scores, to use
only dimensions linked to the current model.

cg08719422 and its highest absolute correlation with one of

the three TGP biomarkers is equal to:

• ≈ 0.404 on the present individuals,

• ≈ 0.232 if missing samples have been imputed to mean.

In that context it has been decided to slightly modify the

missing sample imputations at the initialization step. And so,

∀t ∈ {1, · · · , T} such as some rows of that block are missing,

the others are not missing. The algorithm builds a ddsPLS
with Blockt-non missing samples as a response matrix and

the Y matrix (which is the “official“ response matrix) for the

Blockt-non missing samples as the predictor matrix. Then it

computes the predicted values on the Y matrix for the Blockt-
missing samples. Those are the initialization missing samples.

The regularization and the number of components are taken

accordingly to the choice of the user.

V. RESULTS

A. Cross validation

The two parameters of the ddsPLS model were tuned

with 40-folds cross-validation using a unitary step on L0.

The error criterion chosen is the Mean Square Error in

Prediction (MSEP), R is upper bounded by the number of

columns in the Y block, which is equal to 3. While the

identified first and second components (referred thereafter to

as super-components) substantially contributed to the model

by explaining around 24% and 11% of the total variance of

Y, respectively, the third component added little information

with less than 2% of the variance explained. The MSEP curve

displayed on Figure 2 clearly showed that Peak was badly

predicted in cross-validation since the error was always above

1, the upper-bound limit for prediction when the outcome

variable is standardized. The ETP showed a minimum

MSEP for L0 = 2 which then dramatically increased for

higher L0. By contrast, LagT ime reached a clear minimal

MSEP for L0 = 12. For the following results, we will focus

on the model identified with L0 = 12 that provided the

best predictions for LagT ime and denoted as MTGP in the

following.

TABLE II
SELECTED VARIABLES AND MSEP ERRORS OF MTGP

Variables selected MSEP
L0 HPA Bio. mDNA Lagtime Peak ETP Mean
12 7 2c 3 0.796 1.14 1.05 0.994
c F2 G20210A and AGE are selected.

B. Description of the selected model

Model MTGP , see Section V-A, selects a total of 12 vari-

ables. In Figure 5 are shown the values, per super-component,
of the scaled super-weights, as described in IV-B, as well

as the variance they explain for each of the three TGP

biomarkers. Each row of Figure 5 describes the variables

that compose one of the two identified super-components
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with their corresponding scaled super-weights. The second

column shows the percentage of variance explained by the

super-component for each of the three TGP biomarkers. It

is important to note that those variances are computed on the

imputed data sets, once the model is built.

The first super-component explains 24% of the total Y
joint variance of the three TGP biomarkers, with a decreas-

ing contribution of Peak, ETP and Lagtime (40% of ex-

plained variance, 29% and 1.9%, respectively). Interestingly,

the first super-component was mainly driven by one CpG

site, cg08719422, with some minor contribution of the F2
G20210 mutation and two other CpG, cg18876487 and

cg11015505. The pattern of correlation between selected

features is given on Figure 3.

The three selected CpG sites were correlated with each other

and the correlation between cg08719422 and Peak was

0.64. While this first super-component demonstrated good

descriptive characteristics with high percentages of variance

explained for Peak and ETP , its predictive properties were

relatively poor as illustrated by the high values of the corre-

sponding MSEP that were slightly greater than 1.
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The second super-component was mainly driven by

Age and seven antibodies, and was mainly associated with

LagT ime. It explained about 23% of the LagT ime variance

but only 5.8% and 4.3% for ETP and Peak variability, re-

spectively. Figure 4 shows strong correlations between proteins

but also with Age, which helps imputation in test data sets.

Four of these seven antibodies were targeting proteins of the

complement cascade (C5, C9) and two were antibodies target-

ing proteins (C4BPA, PROS1) associated with the Protein S

pathway [11].

The same model including Age and these seven antibodies

was identified when the ddsPLS algorithm was applied on

the LagT ime variable only (data not shown).

In order to replicate the observed association of the sec-

ond super-component with LagT ime, we investigated it in

an independent sample of 133 MARTHA patients measured

for LagT ime and for the seven antibodies using the same

technique but without Methylation data available. In this

independent population, we observed a trend for a positive

correlation between the seven antibodies signature (plus age)

and LagT ime (r = 0.16, p = 0.069).

VI. CLINICAL INTERESTS AND FUTURE WORKS

Using ddsPLS, a recently developed method for multi-

omics data analysis, we identified a biomarker signature

composed of antibodies targeting seven distinct proteins that

explain about 20% of the plasma variability of LagT ime.

Interestingly, this signature is enriched in proteins belonging to

the complement cascade adding support to the emerging link

between the complement and coagulation pathways. Further

works are needed to assess the relevance of this signature with

respect to the risk of VT.

ddsPLS has also permitted to extract information from

Methylation data set filed with ≈ 70% of missing values,

sadly ddsPLS does not yet permit to correctly predict infor-

mation on test data sets with such a proportion of missing

values but this will drive further researches.

1

0.51

0.6

0.47

0.51

0.55

0.45

0.23

0.35

0.09

0.12

0.51

1

0.63

0.9

0.67

0.4

0.64

0.18

0.37

0.24

0.25

0.6

0.63

1

0.63

0.58

0.43

0.55

0.33

0.34

0.26

0.28

0.47

0.9

0.63

1

0.62

0.41

0.7

0.21

0.36

0.23

0.22

0.51

0.67

0.58

0.62

1

0.45

0.51

0.21

0.35

0.16

0.23

0.55

0.4

0.43

0.41

0.45

1

0.5

0.28

0.35

0.06

0.15

0.45

0.64

0.55

0.7

0.51

0.5

1

0.32

0.34

0.18

0.2

0.23

0.18

0.33

0.21

0.21

0.28

0.32

1

0.36

0.02

0.01

0.35

0.37

0.34

0.36

0.35

0.35

0.34

0.36

1

0.01

0.17

0.09

0.24

0.26

0.23

0.16

0.06

0.18

0.02

0.01

1

0.77

0.12

0.25

0.28

0.22

0.23

0.15

0.2

0.01

0.17

0.77

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
4B

PA
 (H

PA
00

09
26

)

C
9 

(H
PA

07
07

09
)

C
5 

(B
si

07
65

)

C
9 

(B
si

02
70

)

C
9 

(B
si

14
04

)

P
R

O
S

1 
(H

PA
02

39
74

)

C
D

47
 (H

PA
04

46
59

)

AG
E

La
gt

im
e

Pe
ak

E
TP

C4BPA (HPA000926)

C9 (HPA070709)

C5 (Bsi0765)

C9 (Bsi0270)

C9 (Bsi1404)

PROS1 (HPA023974)

CD47 (HPA044659)

AGE

Lagtime

Peak

ETP

Fig. 4. Correlation structures of super-component 2 of the model
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Fig. 5. Scaled super-weights per super-component and variance explained per response variable per component.

Further developments are also needed for widening the use

of the ddsPLS method in the context of mutli-omics epi-

demiological cohorts. These include the handling of missing

data in the response block, denoted as Y, and the possibil-

ity of integrating millions of genetic variables produced by

high-throughput genotyping/sequencing instruments, the latter

raising some computational challenges.
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lenika, M. Lathrop, D.-A. Trégouët, and P.-E. Morange, “Genome wide
association study for plasma levels of natural anticoagulant inhibitors
and protein c anticoagulant pathway: the martha project,” British journal
of haematology, vol. 157, no. 2, pp. 230–239, 2012.
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